
Java Specialists in Action

Java Specialists in
Action

Dr Heinz M. Kabutz

http://www.javaspecialists.eu

1

Java Specialists in Action

Voyage of Discovery

2

 A voyage of discovery through some of the more
advanced topics in Java: dynamic proxies,
references, generics and enums

Java Specialists in Action

Short Introduction to Speaker

 Heinz Kabutz
– Born in Cape Town, South Africa, now live in Chania (Crete)

– PhD Computer Science from the University of Cape Town
• Famous for world’s first successful heart transplant

 Inventor of The Java Specialists’ Newsletter
– 165 newsletters, read by ± 50.000 readers in 118 countries

 Java Programmer & Trainer
– Banks, insurance companies, telecoms, etc.

– Intro to Java, Java 5 Delta, Java Patterns, Extreme Java

 Java Champion

3

Java Specialists in Action 4

Java Specialists in Action 5

Java Specialists in Action 6

Java Specialists in Action

Introduction to Topic

 In this talk, we will look at:
– Design Patterns

– Dynamic Proxies in Java
– Soft, Weak and Strong references
– Some Java 5 features

 For additional free topics:
– The Java™ Specialists’ Newsletter

• http://www.javaspecialists.eu
– And find out how you can make
"hi there".equals("cheers!") == true

7

Java Specialists in Action

Design Patterns

 Mainstream of OO landscape, offering us:
– View into brains of OO experts

– Quicker understanding of
existing designs

• e.g. Visitor pattern
used by Annotation
Processing Tool

– Improved communication
between developers

– Readjust “thinking mistakes”

8

Java Specialists in Action

Good Real Ale

 Software Design is like vintage wine
– To an amateur, all wines are the same

– With experience, you discern difference
– As you become a connoisseur you experience the various

attributes you didn’t notice before
• Grown on north or south slope

 Warning: Once you are hooked, you will no longer be
satisfied with inferior designs

9

Java Specialists in Action

Proxy Pattern

 Intent [GoF95]
– Provide a surrogate or

placeholder for another
object to control access
to it.

10

Java Specialists in Action

Proxy Structure

11

Java Specialists in Action

Types of Proxies in GoF

 Virtual Proxy
– creates expensive objects on demand

 Remote Proxy
– provides a local representation for an object in a different

address space

 Protection Proxy
– controls access to original object

12

We will focus
on this type

Java Specialists in Action

Approaches to writing proxies

 Handcoded
– Only for the very brave … or foolish

 Autogenerated code
– RMI stubs and skeletons created by rmic

 Dynamic proxies
– Available since JDK 1.3

– Dynamically creates a new class at runtime
– Flexible and easy to use

13

Java Specialists in Action

Model for example

 Company creates
moral fibre
“on demand”

14

Java Specialists in Action

public class Company {
 // set in constructor ...
 private final MoralFibre moralFibre;

 public void becomeFocusOfMediaAttention() {
 System.out.println("Look how good we are...");
 cash -= moralFibre.actSociallyResponsibly();
 cash -= moralFibre.cleanupEnvironment();
 cash -= moralFibre.empowerEmployees();
 }

 @Override
 public String toString() {
 return String.format("%s has $ %.2f", name, cash);
 }
}

Quiz: Where is Autoboxing happening?

15

Java Specialists in Action

public interface MoralFibre {

 double actSociallyResponsibly();

 double empowerEmployees();

 double cleanupEnvironment();
}

16

Java Specialists in Action

public class MoralFibreImpl implements MoralFibre {
 // very expensive to create moral fibre!
 private byte[] costOfMoralFibre =
 new byte[900*1000];

 { System.out.println("Moral Fibre Created!"); }
 // AIDS orphans
 public double actSociallyResponsibly() {
 return costOfMoralFibre.length / 3;
 }
 // shares to employees
 public double empowerEmployees() {
 return costOfMoralFibre.length / 3;
 }
 // oiled sea birds
 public double cleanupEnvironment() {
 return costOfMoralFibre.length / 3;
 }
}

17

Java Specialists in Action

Handcoded Proxy

 Usually results in a lot of effort

 Shown just for illustration

 Good programmers have to be lazy
– DRY principle

• Don’t repeat yourself

18

Java Specialists in Action

public class MoralFibreProxy implements MoralFibre {
 private MoralFibreImpl realSubject;
 private MoralFibreImpl realSubject() {
 if (realSubject == null) { // need synchronization
 realSubject = new MoralFibreImpl();
 }
 return realSubject;
 }
 public double actSociallyResponsibly() {
 return realSubject().actSociallyResponsibly();
 }

 public double empowerEmployees() {
 return realSubject().empowerEmployees();
 }

 public double cleanupEnvironment() {
 return realSubject().cleanupEnvironment();
 }
}

19

Java Specialists in Action

import static java.util.concurrent.TimeUnit.SECONDS;

public class WorldMarket0 {
 public static void main(String[] args)
 throws Exception {
 Company maxsol = new Company("Maximum Solutions",
 1000 * 1000, new MoralFibreProxy());
 SECONDS.sleep(2); // better than Thread.sleep();
 maxsol.makeMoney();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.becomeFocusOfMediaAttention();
 System.out.println(maxsol);
 }
}

Oh goodie!
Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...
Maximum Solutions has $ 8000000.00
Look how good we are...
Moral Fibre Created!
Maximum Solutions has $ 7100000.00

20

Java Specialists in Action

Dynamic Proxies

 Handcoded proxy flawed
– Previous approach broken – what if toString() is called?

– Bugs would need to be fixed everywhere

 Dynamic Proxies
– Allows you to write a method call handler

• Invoked every time a method is called on interface

– Easy to use

21

Java Specialists in Action

Defining a Dynamic Proxy

 We make a new instance of an interface class using
java.lang.reflect.Proxy:

Object o = Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[]{ interface to implement },
 implementation of InvocationHandler
);

 The result is an instance of interface to implement
– You could also implement several interfaces

22

Java Specialists in Action

import java.lang.reflect.*;

public class VirtualProxy<T> implements InvocationHandler {
 private T realSubject;
 private final Object[] constrParams;
 private final Constructor<? extends T> subjectConstr;

 public VirtualProxy(Class<? extends T> realSubjectClass,
 Class[] constrParamTypes,
 Object[] constrParams) {
 try {
 subjectConstr = realSubjectClass.
 getConstructor(constrParamTypes);
 } catch (NoSuchMethodException e) {
 throw new IllegalArgumentException(e);
 }
 this.constrParams = constrParams;
 }

Why could we not use
varargs (…) for
constrParamTypes and
constrParams?

23

Finds constructor
that matches given
parameter types

Java Specialists in Action

 private T realSubject() throws Throwable {
 synchronized (this) {
 if (realSubject == null) {
 realSubject = subjectConstr.newInstance(
 constrParams);
 }
 }
 return realSubject;
 }

 public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 return method.invoke(realSubject(), args);
 }
}

24

Java Specialists in Action

A word about synchronization

 We need to synchronize whenever we check the
value of the pointer
– Otherwise several realSubject objects could be created

 We can synchronize on “this”
– No one else will have a pointer to the object

 Double-checked locking broken pre-Java 5
– It now works if you make the field volatile
– Easier to get synchronized correct than volatile

25

Java Specialists in Action

AtomicReference

 We can also use atomic references to set the
realSubject handle

26

public class VirtualProxy<T> implements InvocationHandler {
 private final AtomicReference<T> realSubject =
 new AtomicReference<T>();
 // ...
 private T realSubject() throws Throwable {
 T result = realSubject.get();
 if (result == null) {
 result = subjectConstr.newInstance(constrParams);
 if (!realSubject.compareAndSet(null, result)) {
 result = realSubject.get();
 }
 }
 return result;
 }
}

Java Specialists in Action

Casting without Unchecked Warnings

 Cast to a specific class:
– subjIntf.cast(some_object)

– Allows you to do stupid things, like:
String name = String.class.cast(3);

27

Java Specialists in Action

Casting without Unchecked Warnings

 Cast a class to a typed class
– With “forNamed” classes

 Class<?> c = Class.forName("some_class_name");
 Class<? extends SomeClass> c2 =
 c.asSubclass(SomeClass.class);

– Allows you to do stupid things, like:
 Class<?> c = Class.forName("java.lang.String");
 Class<? extends Runnable> runner =
 c.asSubclass(Runnable.class);
 Runnable r = runner.newInstance();
 r.run();

28

Java Specialists in Action

Proxy Factory

 To simplify our client code, we define a Proxy
Factory:

– We want a return type of class subjIntf
import java.lang.reflect.*;

public class ProxyFactory {
 public static <T> T virtualProxy(Class<T> subjIntf,
 Class<? extends T> realSubjClass,
 Class[] constrParamTypes,
 Object[] constrParams) {
 return subjIntf.cast(Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[] { subjIntf },
 new VirtualProxy<T>(realSubjClass,
 constrParamTypes, constrParams)));
 }

29

Java Specialists in Action

Proxy Factory
 public static <T> T virtualProxy(
 Class<T> subjIntf, Class<? extends T> realSubjClass) {
 return virtualProxy(subjIntf, realSubjClass, null, null);
 }

 public static <T> T virtualProxy(Class<T> subjIntf) {
 try {
 Class<?> c = Class.forName(subjIntf.getName() + "Impl");
 Class<? extends T> realSubjClass =
 c.asSubclass(subjIntf);
 return virtualProxy(subjIntf, realSubjClass);
 } catch (ClassNotFoundException e) {
 throw new IllegalArgumentException(e);
 }
 }
}

30

Java Specialists in Action

import static java.util.concurrent.TimeUnit.SECONDS;
import static proxies.ProxyFactory.virtualProxy;

public class WorldMarket1 {
 public static void main(String[] args)
 throws Exception {
 Company maxsol = new Company("Maximum Solutions",
 1000 * 1000, virtualProxy(MoralFibre.class));
 SECONDS.sleep(2);
 maxsol.makeMoney();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.becomeFocusOfMediaAttention();
 System.out.println(maxsol);
 }
}

Oh goodie!
Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...
Maximum Solutions has $ 8000000.00
Look how good we are...
Moral Fibre Created!
Maximum Solutions has $ 7100000.00

31

Java Specialists in Action

Performance of Dynamic Proxies

0

250

500

750

1,000

No Proxy Hardcoded Dynamic (Strong) Dynamic (Soft)

Method calls (100000/s)
Standard Deviation

32

Java Specialists in Action

Analysis of Performance Results

 Consider performance in real-life context
– How often is a method called per second?

– What contention are you trying to solve – CPU, IO or
memory?

• Probably the wrong solution for CPU bound contention

 Big deviation for “No Proxy” – probably due to
HotSpot compiler inlining method call

33

Java Specialists in Action

Virtual Proxy Gotchas

 Be careful how you implement equals()
– Should always be symmetric (from JavaDocs):

• For any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true

 Exceptions
– General problem with proxies

• Local interfaces vs. remote interfaces in EJB

– Were checked exceptions invented on April 1st ?

34

Java Specialists in Action

Checkpoint

 We’ve looked at the concept of a Virtual Proxy based
on the GoF pattern

 We have seen how to implement this with dynamic
proxies (since JDK 1.3)

 Lastly, we were unsurprised that dynamic proxy
performs worse than handcoded proxy

 Next we will look at Soft and Weak References

35

Java Specialists in Action

References (Strong, Soft, Weak)

 We want to release references when possible
– Saves on memory

– Soft, Weak and Strong references offer different benefits
– Works in conjunction with our dynamic proxy
– However, references are not transparent

36

Java Specialists in Action

Strong, Soft and Weak References

 Java 1.2 introduced concept of soft and weak
references

 Strong reference is never released

 Weak reference is released when no strong reference
is pointing to the object

 Soft reference can be released, but will typically only
be released when memory is low
– Works correctly since JDK 1.4

37

Java Specialists in Action

Object Adapter Pattern – Pointers

 References are not transparent

 We make them more transparent by defining a Pointer
interface

– Can then be Strong, Weak or Soft
public interface Pointer<T> {
 void set(T t);
 T get();
}

38

Java Specialists in Action

Strong Pointer

 Simply contains a strong reference to object
– Will never be garbage collected
public class StrongPointer<T>
 implements Pointer<T> {
 private T t;
 public void set(T t) { this.t = t; }
 public T get() { return t; }
}

39

Java Specialists in Action

Reference Pointer

 Abstract superclass for soft and weak reference
import java.lang.ref.Reference;

public abstract class RefPointer<T>
 implements Pointer<T> {
 private Reference<T> ref;
 protected void set(Reference<T> ref) {
 this.ref = ref;
 }
 public T get() {
 return ref == null ? null : ref.get();
 }
}

40

Java Specialists in Action

Soft and Weak Reference Pointers

 Contains either soft or weak reference to object

 Will be garbage collected later
public class SoftPointer<T> extends RefPointer<T> {
 public void set(T t) {
 set(new SoftReference<T>(t));
 }
}

public class WeakPointer<T> extends RefPointer<T> {
 public void set(T t) {
 set(new WeakReference<T>(t));
 }
}

41

Java Specialists in Action

Using Turbocharged enums

 We want to define enum for these pointers

 But, we don’t want to use switch
– Switch and multi-conditional if-else are anti-OO
– Rather use inheritance, strategy or state patterns

 Enums allow us to define abstract methods
– We implement these in the enum values themselves

42

Java Specialists in Action

public enum PointerType {
 STRONG { // these are anonymous inner classes
 public <T> Pointer<T> make() { // note generics
 return new StrongPointer<T>();
 }
 },
 WEAK {
 public <T> Pointer<T> make() {
 return new WeakPointer<T>();
 }
 },
 SOFT {
 public <T> Pointer<T> make() {
 return new SoftPointer<T>();
 }
 };

 public abstract <T> Pointer<T> make();
}

43

Java Specialists in Action

public void test(PointerType type) {
 System.out.println("Testing " + type + "Pointer");
 String obj = new String(type.toString());
 Pointer<String> pointer = type.make();
 pointer.set(obj);
 System.out.println(pointer.get());
 obj = null;
 forceGC();
 System.out.println(pointer.get());
 forceOOME();
 System.out.println(pointer.get());
 System.out.println();
}

Testing STRONG Pointer
STRONG
STRONG
STRONG

Testing WEAK Pointer
WEAK
null
null

Testing SOFT Pointer
SOFT
SOFT
null

44

Java Specialists in Action

 References put additional strain on GC

 Only use with large objects

 Memory space preserving measure
– But can impact on performance
– Additional step in GC that runs in separate thread

Danger – References

45

Java Specialists in Action

Combining Pointers and Proxies

 With dynamic proxies, we can create objects on
demand
– How can we use our Pointers to clear them again?

46

Java Specialists in Action

import java.lang.reflect.*;

public class VirtualProxy<T> implements InvocationHandler {
 private final Pointer<T> realSubjectPointer;
 private final Object[] constrParams;
 private final Constructor<? extends T> subjectConstr;

 public VirtualProxy(Class<? extends T> realSubjectClass,
 Class[] constrParamTypes,
 Object[] constrParams,
 PointerType pointerType) {
 try {
 subjectConstr = realSubjectClass.
 getConstructor(constrParamTypes);
 realSubjectPointer = pointerType.make();
 } catch (NoSuchMethodException e) {
 throw new IllegalArgumentException(e);
 }
 this.constrParams = constrParams;
 }

47

Java Specialists in Action

 private T realSubject() throws Throwable {
 synchronized(this) {
 T realSubject = realSubjectPointer.get();
 if (realSubject == null) {
 realSubject = subjectConstr.newInstance(
 constrParams);
 realSubjectPointer.set(realSubject);
 }
 return realSubject;
 }
 }
 public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 return method.invoke(realSubject(), args);
 }
}

➡We now use the PointerType to create either strong, soft or weak
references

48

Java Specialists in Action

 Weak Pointer is cleared when we don’t have a strong
ref

Company maxsol = new Company(
 "Maximum Solutions", 1000000,
 virtualProxy(MoralFibre.class, WEAK));
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

// short term memory...
System.gc();
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

Oops, sorry about that
oilspill...
Look how good we are...
Moral Fibre Created!
Oops, sorry about that
oilspill...
Look how good we are...
Moral Fibre Created!

49

Java Specialists in Action

 Soft Pointer more appropriate
Company maxsol = new Company(
 "Maximum Solutions", 1000000,
 virtualProxy(MoralFibre.class, SOFT));
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();
System.gc(); // ignores soft pointer
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

forceOOME(); // clears soft pointer
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

private static void forceOOME() {
 try {byte[] b = new byte[1000 * 1000 * 1000];}
 catch (OutOfMemoryError error)
 { System.err.println(error); }
}

Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!
Oops, sorry about that oilspill...
Look how good we are...
java.lang.OutOfMemoryError:
 Java heap space
Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!

50

Java Specialists in Action

 It should be possible to combine our SoftPointer
concept with AtomicReferences
– Perhaps the next Java Specialists' Newsletter?
– http://www.javaspecialists.eu

51

Combining Soft and Atomic References?

Java Specialists in Action

Further uses of Dynamic Proxy

 Protection Proxy
– Only route call when caller has correct security context

• Similar to the “Personal Assistant” pattern

 Dynamic Decorator or Filter
– We can add functions dynamically to an object
– See newsletter # 34

• http://www.javaspecialists.eu/archive/Issue034.html
– Disclaimer: a bit difficult to understand

52

Java Specialists in Action

Dynamic Object Adapter

 Based on Adapter pattern by GoF

 Plain Object Adapter has some drawbacks:
– Sometimes you want to adapt an interface, but only want to

override some methods
– E.g. java.sql.Connection

 Structurally, the patterns Adapter, Proxy, Decorator
and Composite are almost identical

53

Java Specialists in Action

Object Adapter Structure (GoF)

54

Java Specialists in Action

 We delegate the call if the adapter has a method with
this signature

 Objects adaptee and adapter can be of any type
public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 try {
 // find out if the adapter has this method
 Method other = adaptedMethods.get(
 new MethodIdentifier(method));
 if (other != null) { // yes it has
 return other.invoke(adapter, args);
 } else { // no it does not
 return method.invoke(adaptee, args);
 }
 } catch (InvocationTargetException e) {
 throw e.getTargetException();
 }
}

55

Java Specialists in Action

 The ProxyFactory now gets a new method:

public class ProxyFactory {
 public static <T> T adapt(Object adaptee,
 Class<T> target,
 Object adapter) {
 return target.cast(
 Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[] {target},
 new DynamicObjectAdapter(
 adapter, adaptee)));
 }
}

56

Java Specialists in Action

 Client can now adapt interfaces very easily

import static proxies.ProxyFactory.*;
// ...
Connection con = DriverManager.getConnection("...");
Connection con2 = adapt(con, Connection.class,
 new Object() {
 public void close() {
 System.out.println("No, don’t close connection");
 }
 });

• For additional examples of this technique, see The
Java Specialists’ Newsletter # 108

57

Java Specialists in Action

Benefits of Dynamic Proxies

 Write once, use everywhere

 Single point of change

 Elegant coding on the client
– Esp. combined with static imports & generics

 Slight performance overhead
– But view that in context of application

58

Java Specialists in Action

Dynamic Proxies in Scripting

import javax.script.*;

public class ScriptTest {
 public static void main(String[] args)
 throws ScriptException {
 ScriptEngineManager manager =
 new ScriptEngineManager();
 ScriptEngine eng =
 manager.getEngineByExtension("js");
 eng.eval("function run() {" +
 "print('run called\\n'); }");
 Invocable inv = Invocable.class.cast(eng);
 Runnable r = inv.getInterface(Runnable.class);
 r.run();
 System.out.println(r.getClass());
 }
}

run called
class $Proxy0

59

Java Specialists in Action

Conclusion

 Dynamic proxies can make coding more consistent
– Reduce WET

• Write Everything Twice

 Easy to use, once syntax is understood

 Παν Μετρον Αριστον
– Everything in moderation!

60

Java Specialists in Action

Java Specialists in
Action

Dr Heinz M. Kabutz

http://www.javaspecialists.eu

61

